
Java Specialists in Action

Java Specialists in
Action

Dr Heinz M. Kabutz

http://www.javaspecialists.eu

1

Java Specialists in Action

Voyage of Discovery

2

 A voyage of discovery through some of the more
advanced topics in Java: dynamic proxies,
references, generics and enums

Java Specialists in Action

Short Introduction to Speaker

 Heinz Kabutz
– Born in Cape Town, South Africa, now live in Chania (Crete)

– PhD Computer Science from the University of Cape Town
• Famous for world’s first successful heart transplant

 Inventor of The Java Specialists’ Newsletter
– 165 newsletters, read by ± 50.000 readers in 118 countries

 Java Programmer & Trainer
– Banks, insurance companies, telecoms, etc.

– Intro to Java, Java 5 Delta, Java Patterns, Extreme Java

 Java Champion

3

Java Specialists in Action 4

Java Specialists in Action 5

Java Specialists in Action 6

Java Specialists in Action

Introduction to Topic

 In this talk, we will look at:
– Design Patterns

– Dynamic Proxies in Java
– Soft, Weak and Strong references
– Some Java 5 features

 For additional free topics:
– The Java™ Specialists’ Newsletter

• http://www.javaspecialists.eu
– And find out how you can make
"hi there".equals("cheers!") == true

7

Java Specialists in Action

Design Patterns

 Mainstream of OO landscape, offering us:
– View into brains of OO experts

– Quicker understanding of
existing designs

• e.g. Visitor pattern
used by Annotation
Processing Tool

– Improved communication
between developers

– Readjust “thinking mistakes”

8

Java Specialists in Action

Good Real Ale

 Software Design is like vintage wine
– To an amateur, all wines are the same

– With experience, you discern difference
– As you become a connoisseur you experience the various

attributes you didn’t notice before
• Grown on north or south slope

 Warning: Once you are hooked, you will no longer be
satisfied with inferior designs

9

Java Specialists in Action

Proxy Pattern

 Intent [GoF95]
– Provide a surrogate or

placeholder for another
object to control access
to it.

10

Java Specialists in Action

Proxy Structure

11

Java Specialists in Action

Types of Proxies in GoF

 Virtual Proxy
– creates expensive objects on demand

 Remote Proxy
– provides a local representation for an object in a different

address space

 Protection Proxy
– controls access to original object

12

We will focus
on this type

Java Specialists in Action

Approaches to writing proxies

 Handcoded
– Only for the very brave … or foolish

 Autogenerated code
– RMI stubs and skeletons created by rmic

 Dynamic proxies
– Available since JDK 1.3

– Dynamically creates a new class at runtime
– Flexible and easy to use

13

Java Specialists in Action

Model for example

 Company creates
moral fibre
“on demand”

14

Java Specialists in Action

public class Company {
 // set in constructor ...
 private final MoralFibre moralFibre;

 public void becomeFocusOfMediaAttention() {
 System.out.println("Look how good we are...");
 cash -= moralFibre.actSociallyResponsibly();
 cash -= moralFibre.cleanupEnvironment();
 cash -= moralFibre.empowerEmployees();
 }

 @Override
 public String toString() {
 return String.format("%s has $ %.2f", name, cash);
 }
}

Quiz: Where is Autoboxing happening?

15

Java Specialists in Action

public interface MoralFibre {

 double actSociallyResponsibly();

 double empowerEmployees();

 double cleanupEnvironment();
}

16

Java Specialists in Action

public class MoralFibreImpl implements MoralFibre {
 // very expensive to create moral fibre!
 private byte[] costOfMoralFibre =
 new byte[900*1000];

 { System.out.println("Moral Fibre Created!"); }
 // AIDS orphans
 public double actSociallyResponsibly() {
 return costOfMoralFibre.length / 3;
 }
 // shares to employees
 public double empowerEmployees() {
 return costOfMoralFibre.length / 3;
 }
 // oiled sea birds
 public double cleanupEnvironment() {
 return costOfMoralFibre.length / 3;
 }
}

17

Java Specialists in Action

Handcoded Proxy

 Usually results in a lot of effort

 Shown just for illustration

 Good programmers have to be lazy
– DRY principle

• Don’t repeat yourself

18

Java Specialists in Action

public class MoralFibreProxy implements MoralFibre {
 private MoralFibreImpl realSubject;
 private MoralFibreImpl realSubject() {
 if (realSubject == null) { // need synchronization
 realSubject = new MoralFibreImpl();
 }
 return realSubject;
 }
 public double actSociallyResponsibly() {
 return realSubject().actSociallyResponsibly();
 }

 public double empowerEmployees() {
 return realSubject().empowerEmployees();
 }

 public double cleanupEnvironment() {
 return realSubject().cleanupEnvironment();
 }
}

19

Java Specialists in Action

import static java.util.concurrent.TimeUnit.SECONDS;

public class WorldMarket0 {
 public static void main(String[] args)
 throws Exception {
 Company maxsol = new Company("Maximum Solutions",
 1000 * 1000, new MoralFibreProxy());
 SECONDS.sleep(2); // better than Thread.sleep();
 maxsol.makeMoney();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.becomeFocusOfMediaAttention();
 System.out.println(maxsol);
 }
}

Oh goodie!
Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...
Maximum Solutions has $ 8000000.00
Look how good we are...
Moral Fibre Created!
Maximum Solutions has $ 7100000.00

20

Java Specialists in Action

Dynamic Proxies

 Handcoded proxy flawed
– Previous approach broken – what if toString() is called?

– Bugs would need to be fixed everywhere

 Dynamic Proxies
– Allows you to write a method call handler

• Invoked every time a method is called on interface

– Easy to use

21

Java Specialists in Action

Defining a Dynamic Proxy

 We make a new instance of an interface class using
java.lang.reflect.Proxy:

Object o = Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[]{ interface to implement },
 implementation of InvocationHandler
);

 The result is an instance of interface to implement
– You could also implement several interfaces

22

Java Specialists in Action

import java.lang.reflect.*;

public class VirtualProxy<T> implements InvocationHandler {
 private T realSubject;
 private final Object[] constrParams;
 private final Constructor<? extends T> subjectConstr;

 public VirtualProxy(Class<? extends T> realSubjectClass,
 Class[] constrParamTypes,
 Object[] constrParams) {
 try {
 subjectConstr = realSubjectClass.
 getConstructor(constrParamTypes);
 } catch (NoSuchMethodException e) {
 throw new IllegalArgumentException(e);
 }
 this.constrParams = constrParams;
 }

Why could we not use
varargs (…) for
constrParamTypes and
constrParams?

23

Finds constructor
that matches given
parameter types

Java Specialists in Action

 private T realSubject() throws Throwable {
 synchronized (this) {
 if (realSubject == null) {
 realSubject = subjectConstr.newInstance(
 constrParams);
 }
 }
 return realSubject;
 }

 public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 return method.invoke(realSubject(), args);
 }
}

24

Java Specialists in Action

A word about synchronization

 We need to synchronize whenever we check the
value of the pointer
– Otherwise several realSubject objects could be created

 We can synchronize on “this”
– No one else will have a pointer to the object

 Double-checked locking broken pre-Java 5
– It now works if you make the field volatile
– Easier to get synchronized correct than volatile

25

Java Specialists in Action

AtomicReference

 We can also use atomic references to set the
realSubject handle

26

public class VirtualProxy<T> implements InvocationHandler {
 private final AtomicReference<T> realSubject =
 new AtomicReference<T>();
 // ...
 private T realSubject() throws Throwable {
 T result = realSubject.get();
 if (result == null) {
 result = subjectConstr.newInstance(constrParams);
 if (!realSubject.compareAndSet(null, result)) {
 result = realSubject.get();
 }
 }
 return result;
 }
}

Java Specialists in Action

Casting without Unchecked Warnings

 Cast to a specific class:
– subjIntf.cast(some_object)

– Allows you to do stupid things, like:
String name = String.class.cast(3);

27

Java Specialists in Action

Casting without Unchecked Warnings

 Cast a class to a typed class
– With “forNamed” classes

 Class<?> c = Class.forName("some_class_name");
 Class<? extends SomeClass> c2 =
 c.asSubclass(SomeClass.class);

– Allows you to do stupid things, like:
 Class<?> c = Class.forName("java.lang.String");
 Class<? extends Runnable> runner =
 c.asSubclass(Runnable.class);
 Runnable r = runner.newInstance();
 r.run();

28

Java Specialists in Action

Proxy Factory

 To simplify our client code, we define a Proxy
Factory:

– We want a return type of class subjIntf
import java.lang.reflect.*;

public class ProxyFactory {
 public static <T> T virtualProxy(Class<T> subjIntf,
 Class<? extends T> realSubjClass,
 Class[] constrParamTypes,
 Object[] constrParams) {
 return subjIntf.cast(Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[] { subjIntf },
 new VirtualProxy<T>(realSubjClass,
 constrParamTypes, constrParams)));
 }

29

Java Specialists in Action

Proxy Factory
 public static <T> T virtualProxy(
 Class<T> subjIntf, Class<? extends T> realSubjClass) {
 return virtualProxy(subjIntf, realSubjClass, null, null);
 }

 public static <T> T virtualProxy(Class<T> subjIntf) {
 try {
 Class<?> c = Class.forName(subjIntf.getName() + "Impl");
 Class<? extends T> realSubjClass =
 c.asSubclass(subjIntf);
 return virtualProxy(subjIntf, realSubjClass);
 } catch (ClassNotFoundException e) {
 throw new IllegalArgumentException(e);
 }
 }
}

30

Java Specialists in Action

import static java.util.concurrent.TimeUnit.SECONDS;
import static proxies.ProxyFactory.virtualProxy;

public class WorldMarket1 {
 public static void main(String[] args)
 throws Exception {
 Company maxsol = new Company("Maximum Solutions",
 1000 * 1000, virtualProxy(MoralFibre.class));
 SECONDS.sleep(2);
 maxsol.makeMoney();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.becomeFocusOfMediaAttention();
 System.out.println(maxsol);
 }
}

Oh goodie!
Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...
Maximum Solutions has $ 8000000.00
Look how good we are...
Moral Fibre Created!
Maximum Solutions has $ 7100000.00

31

Java Specialists in Action

Performance of Dynamic Proxies

0

250

500

750

1,000

No Proxy Hardcoded Dynamic (Strong) Dynamic (Soft)

Method calls (100000/s)
Standard Deviation

32

Java Specialists in Action

Analysis of Performance Results

 Consider performance in real-life context
– How often is a method called per second?

– What contention are you trying to solve – CPU, IO or
memory?

• Probably the wrong solution for CPU bound contention

 Big deviation for “No Proxy” – probably due to
HotSpot compiler inlining method call

33

Java Specialists in Action

Virtual Proxy Gotchas

 Be careful how you implement equals()
– Should always be symmetric (from JavaDocs):

• For any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true

 Exceptions
– General problem with proxies

• Local interfaces vs. remote interfaces in EJB

– Were checked exceptions invented on April 1st ?

34

Java Specialists in Action

Checkpoint

 We’ve looked at the concept of a Virtual Proxy based
on the GoF pattern

 We have seen how to implement this with dynamic
proxies (since JDK 1.3)

 Lastly, we were unsurprised that dynamic proxy
performs worse than handcoded proxy

 Next we will look at Soft and Weak References

35

Java Specialists in Action

References (Strong, Soft, Weak)

 We want to release references when possible
– Saves on memory

– Soft, Weak and Strong references offer different benefits
– Works in conjunction with our dynamic proxy
– However, references are not transparent

36

Java Specialists in Action

Strong, Soft and Weak References

 Java 1.2 introduced concept of soft and weak
references

 Strong reference is never released

 Weak reference is released when no strong reference
is pointing to the object

 Soft reference can be released, but will typically only
be released when memory is low
– Works correctly since JDK 1.4

37

Java Specialists in Action

Object Adapter Pattern – Pointers

 References are not transparent

 We make them more transparent by defining a Pointer
interface

– Can then be Strong, Weak or Soft
public interface Pointer<T> {
 void set(T t);
 T get();
}

38

Java Specialists in Action

Strong Pointer

 Simply contains a strong reference to object
– Will never be garbage collected
public class StrongPointer<T>
 implements Pointer<T> {
 private T t;
 public void set(T t) { this.t = t; }
 public T get() { return t; }
}

39

Java Specialists in Action

Reference Pointer

 Abstract superclass for soft and weak reference
import java.lang.ref.Reference;

public abstract class RefPointer<T>
 implements Pointer<T> {
 private Reference<T> ref;
 protected void set(Reference<T> ref) {
 this.ref = ref;
 }
 public T get() {
 return ref == null ? null : ref.get();
 }
}

40

Java Specialists in Action

Soft and Weak Reference Pointers

 Contains either soft or weak reference to object

 Will be garbage collected later
public class SoftPointer<T> extends RefPointer<T> {
 public void set(T t) {
 set(new SoftReference<T>(t));
 }
}

public class WeakPointer<T> extends RefPointer<T> {
 public void set(T t) {
 set(new WeakReference<T>(t));
 }
}

41

Java Specialists in Action

Using Turbocharged enums

 We want to define enum for these pointers

 But, we don’t want to use switch
– Switch and multi-conditional if-else are anti-OO
– Rather use inheritance, strategy or state patterns

 Enums allow us to define abstract methods
– We implement these in the enum values themselves

42

Java Specialists in Action

public enum PointerType {
 STRONG { // these are anonymous inner classes
 public <T> Pointer<T> make() { // note generics
 return new StrongPointer<T>();
 }
 },
 WEAK {
 public <T> Pointer<T> make() {
 return new WeakPointer<T>();
 }
 },
 SOFT {
 public <T> Pointer<T> make() {
 return new SoftPointer<T>();
 }
 };

 public abstract <T> Pointer<T> make();
}

43

Java Specialists in Action

public void test(PointerType type) {
 System.out.println("Testing " + type + "Pointer");
 String obj = new String(type.toString());
 Pointer<String> pointer = type.make();
 pointer.set(obj);
 System.out.println(pointer.get());
 obj = null;
 forceGC();
 System.out.println(pointer.get());
 forceOOME();
 System.out.println(pointer.get());
 System.out.println();
}

Testing STRONG Pointer
STRONG
STRONG
STRONG

Testing WEAK Pointer
WEAK
null
null

Testing SOFT Pointer
SOFT
SOFT
null

44

Java Specialists in Action

 References put additional strain on GC

 Only use with large objects

 Memory space preserving measure
– But can impact on performance
– Additional step in GC that runs in separate thread

Danger – References

45

Java Specialists in Action

Combining Pointers and Proxies

 With dynamic proxies, we can create objects on
demand
– How can we use our Pointers to clear them again?

46

Java Specialists in Action

import java.lang.reflect.*;

public class VirtualProxy<T> implements InvocationHandler {
 private final Pointer<T> realSubjectPointer;
 private final Object[] constrParams;
 private final Constructor<? extends T> subjectConstr;

 public VirtualProxy(Class<? extends T> realSubjectClass,
 Class[] constrParamTypes,
 Object[] constrParams,
 PointerType pointerType) {
 try {
 subjectConstr = realSubjectClass.
 getConstructor(constrParamTypes);
 realSubjectPointer = pointerType.make();
 } catch (NoSuchMethodException e) {
 throw new IllegalArgumentException(e);
 }
 this.constrParams = constrParams;
 }

47

Java Specialists in Action

 private T realSubject() throws Throwable {
 synchronized(this) {
 T realSubject = realSubjectPointer.get();
 if (realSubject == null) {
 realSubject = subjectConstr.newInstance(
 constrParams);
 realSubjectPointer.set(realSubject);
 }
 return realSubject;
 }
 }
 public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 return method.invoke(realSubject(), args);
 }
}

➡We now use the PointerType to create either strong, soft or weak
references

48

Java Specialists in Action

 Weak Pointer is cleared when we don’t have a strong
ref

Company maxsol = new Company(
 "Maximum Solutions", 1000000,
 virtualProxy(MoralFibre.class, WEAK));
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

// short term memory...
System.gc();
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

Oops, sorry about that
oilspill...
Look how good we are...
Moral Fibre Created!
Oops, sorry about that
oilspill...
Look how good we are...
Moral Fibre Created!

49

Java Specialists in Action

 Soft Pointer more appropriate
Company maxsol = new Company(
 "Maximum Solutions", 1000000,
 virtualProxy(MoralFibre.class, SOFT));
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();
System.gc(); // ignores soft pointer
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

forceOOME(); // clears soft pointer
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

private static void forceOOME() {
 try {byte[] b = new byte[1000 * 1000 * 1000];}
 catch (OutOfMemoryError error)
 { System.err.println(error); }
}

Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!
Oops, sorry about that oilspill...
Look how good we are...
java.lang.OutOfMemoryError:
 Java heap space
Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!

50

Java Specialists in Action

 It should be possible to combine our SoftPointer
concept with AtomicReferences
– Perhaps the next Java Specialists' Newsletter?
– http://www.javaspecialists.eu

51

Combining Soft and Atomic References?

Java Specialists in Action

Further uses of Dynamic Proxy

 Protection Proxy
– Only route call when caller has correct security context

• Similar to the “Personal Assistant” pattern

 Dynamic Decorator or Filter
– We can add functions dynamically to an object
– See newsletter # 34

• http://www.javaspecialists.eu/archive/Issue034.html
– Disclaimer: a bit difficult to understand

52

Java Specialists in Action

Dynamic Object Adapter

 Based on Adapter pattern by GoF

 Plain Object Adapter has some drawbacks:
– Sometimes you want to adapt an interface, but only want to

override some methods
– E.g. java.sql.Connection

 Structurally, the patterns Adapter, Proxy, Decorator
and Composite are almost identical

53

Java Specialists in Action

Object Adapter Structure (GoF)

54

Java Specialists in Action

 We delegate the call if the adapter has a method with
this signature

 Objects adaptee and adapter can be of any type
public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 try {
 // find out if the adapter has this method
 Method other = adaptedMethods.get(
 new MethodIdentifier(method));
 if (other != null) { // yes it has
 return other.invoke(adapter, args);
 } else { // no it does not
 return method.invoke(adaptee, args);
 }
 } catch (InvocationTargetException e) {
 throw e.getTargetException();
 }
}

55

Java Specialists in Action

 The ProxyFactory now gets a new method:

public class ProxyFactory {
 public static <T> T adapt(Object adaptee,
 Class<T> target,
 Object adapter) {
 return target.cast(
 Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[] {target},
 new DynamicObjectAdapter(
 adapter, adaptee)));
 }
}

56

Java Specialists in Action

 Client can now adapt interfaces very easily

import static proxies.ProxyFactory.*;
// ...
Connection con = DriverManager.getConnection("...");
Connection con2 = adapt(con, Connection.class,
 new Object() {
 public void close() {
 System.out.println("No, don’t close connection");
 }
 });

• For additional examples of this technique, see The
Java Specialists’ Newsletter # 108

57

Java Specialists in Action

Benefits of Dynamic Proxies

 Write once, use everywhere

 Single point of change

 Elegant coding on the client
– Esp. combined with static imports & generics

 Slight performance overhead
– But view that in context of application

58

Java Specialists in Action

Dynamic Proxies in Scripting

import javax.script.*;

public class ScriptTest {
 public static void main(String[] args)
 throws ScriptException {
 ScriptEngineManager manager =
 new ScriptEngineManager();
 ScriptEngine eng =
 manager.getEngineByExtension("js");
 eng.eval("function run() {" +
 "print('run called\\n'); }");
 Invocable inv = Invocable.class.cast(eng);
 Runnable r = inv.getInterface(Runnable.class);
 r.run();
 System.out.println(r.getClass());
 }
}

run called
class $Proxy0

59

Java Specialists in Action

Conclusion

 Dynamic proxies can make coding more consistent
– Reduce WET

• Write Everything Twice

 Easy to use, once syntax is understood

 Παν Μετρον Αριστον
– Everything in moderation!

60

Java Specialists in Action

Java Specialists in
Action

Dr Heinz M. Kabutz

http://www.javaspecialists.eu

61

